Effect of Verbal Praise on Achievement Goal Orientation, Motivation, and Performance Attribution

Kevin L. Droe

Journal of Music Teacher Education published online 10 September 2012
DOI: 10.1177/1057083712458592

The online version of this article can be found at: http://jmt.sagepub.com/content/early/2012/09/06/1057083712458592

Published by:

[SAGE](http://www.sagepublications.com)

On behalf of:

[NAfME](http://www.sagemusicedu.org)

National Association for Music Education

Additional services and information for *Journal of Music Teacher Education* can be found at:

Email Alerts: http://jmt.sagepub.com/cgi/alerts

Subscriptions: http://jmt.sagepub.com/subscriptions

Reprints: http://www.sagepub.com/journalsReprints.nav

Permissions: http://www.sagepub.com/journalsPermissions.nav

>> OnlineFirst Version of Record - Sep 10, 2012

What is This?
Effect of Verbal Praise on Achievement Goal Orientation, Motivation, and Performance Attribution

Kevin L. Droe

Abstract

The purpose of this study was to examine the effects of verbal praise. Modeled after the work of Mueller and Dweck, participants were 87 fourth-grade students who each took a simple rhythm-tapping test and were assigned one of three treatments: (a) verbal praise for effort, (b) verbal praise for talent, or (c) no praise. Each student was then asked to select an achievement goal (performance or learning) followed by a second rhythm-tapping test of challenging rhythms. Following both tasks, students were asked to rate measures of motivation and performance attribution. Results indicated that students who received praise for effort more often selected learning goals and reported a higher attitude toward task persistence. Students who received praise for talent more frequently selected performance goals. Results suggest that music teachers and teacher educators might examine the use of verbal praise and reconsider how the idea of talent or ability is conveyed within the context of a music classroom.

Keywords

verbal praise, motivation, attribution, teaching effectiveness, teaching techniques, music teacher preparation

The teaching–feedback loop involves giving students praise when they have performed something correctly. In recent years, the nature of this praise has been examined and found to affect student motivation and attribution for success. Research in the

1University of Northern Iowa, Cedar Falls, IA, USA

Corresponding Author:
Kevin L. Droe, University of Northern Iowa, 069 Russell Hall, Cedar Falls, IA 50614-0246, USA
Email: kevin.droe@uni.edu
field of psychology indicates that praise for a student’s effort does not function in the same way as praise for what some would label the student’s talent or natural ability. The effect of praise can be seen in student motivation, goal orientation, and performance attribution. Since the field of music is closely associated with the term talent, this investigation attempted to examine how praise functions in a music setting. Specifically, the purpose of this study was to examine the effects of verbal praise on goal orientation, attribution, and motivation in a music setting.

Much of the research in the area of motivation or attribution involves using mathematics (Blackwell, Trzesniewski, & Dweck, 2007; E. S. Elliot & Dweck, 1988; Mueller & Dweck, 1998; Vispoel & Austin, 1995) and sports (Conroy, Kaye, & Coatsworth, 2006; Martin, 2007). Research in motivation and attribution in music represents a healthy body of literature (Asmus & Harrison, 1990; Austin, 1988; Austin & Vispoel, 1992; McPherson & McCormick, 2000; Miksza, 2006; Schmidt, 2005; Sichivitsa, 2003; Vispoel & Austin, 1995). A recent issue of Research Studies in Music Education was dedicated to motivation research from various countries (Leung & McPherson, 2010; McPherson & Hendricks, 2010).

Much of the empirical research devoted to motivation (Pintrich, 2003) has included music participation as a domain of motivation (Martin, 2007). Psychology research supports that basic intelligence is not the major cause of achievement in school, and additionally, praising intelligence does not help self-esteem (Dweck, 2008b). Psychologist Carol Dweck (2008b) has discouraged the praise of intelligence stating, “Praising students’ intelligence gives them a short burst of pride, followed by a long string of negative consequences” (p. 36). New theories (Dweck, 2006) support two mind-sets: fixed (entity theory) and growth (incremental theory). Entity theorists view intelligence as fixed whereas incremental theorists support the notion that intelligence can change (Blackwell et al., 2007; Nussbaum & Dweck, 2008; Schmidt, 2007).

Different types of praise have been found to affect intelligence mind-sets and performance attribution. Students praised for their intelligence tend to adopt a fixed mind-set and attribute their success to their smartness, whereas students praised for their effort tend to adopt a growth mind-set and attribute their successes to effort (Mueller & Dweck, 1998). Children perceiving intelligence with a fixed mind-set may lose interest in challenging problems, whereas children with a growth mind-set might interpret the challenge as a source of motivation (Dweck, 2008b). Further evidence supports that students praised for intelligence experience a decline in performance (Mueller & Dweck, 1998).

Since praising effort (e.g., praise for engagement, perseverance, use of strategies, improvement) has been associated with increases in motivation for more difficult tasks, researchers and teachers have produced teaching interventions that help students learn that minds (i.e., intelligence, brains) are not fixed. These efforts have been shown to be successful in improving both academic performance and enjoyment (Aronson & Fried, 2002; Blackwell et al., 2007; Dweck, 2008a; Good, Aronson, & Inzlicht, 2003). An examination of the literature relating to motivation results in multiple theories that attempt to explain why people do what they do or how people explain why they
did what they did. Theories of motivation tend to be related to efficacy, cognitive attribution, and thoughts about goals for which one is striving (Atkinson, 1957/1983; Weiner, 1990). Achievement goal theory describes the purpose of achievement behavior. An achievement goal has a program of cognitive processes that have cognitive, affective and behavioral consequences (E. S. Elliot & Dweck, 1988).

The strength of motivation to perform some act is assumed to be a multiplicative function of the strength of the motive, the expectancy (subjective probability) that the act will have as a consequence to attainment of an incentive, and the value of the incentive: Motivation = f(Motivation × Expectancy × Incentive; Atkinson, 1957/1983, p. 101). In addition to expectancy and incentive, a third motivator could be work avoidance (Harackiewicz, Barron, Carter, Lehto, & Elliot, 1997) as described by a 2 × 2 grid that includes mastery approach, mastery avoidance, performance approach, and performance avoidance as sources of motivation (A. J. Elliot & McGregor, 2001).

Motivation research also includes the identification of performance and learning goals (Dweck & Leggett, 1988). Learning goals (mastery goals) indicate specific content and are focused toward increasing ability (Blackwell et al., 2007; Marzano, 2009). “Personal mastery goals refer to a goal to learn and improve” (Turner & Patrick, 2008, p. 119). Mastery goals (learning goals) and mastery learning are not the same. Mastery learning is an instructional approach, whereas mastery goals are based on participant responses (Ames, 1992). In contrast to mastery goals, performance goals specify a grade or score (Blackwell et al., 2007; Marzano, 2009) and have been associated with competition. “Personal performance approach goals refer to a goal to demonstrate competence by outperforming others” (Turner & Patrick, 2008, p. 119).

When comparing performance goals with learning goals, learning goals are associated with higher achievement (Butler, 1987; E. S. Elliot & Dweck, 1988; Miksza, 2009; Mueller & Dweck, 1998) and tend to be more effective for complex tasks (Utman, 1997). Performance goals, on the other hand, may lead to higher performance in performance goal–based (i.e., grade) courses (Harackiewicz et al., 1997) but are related to failure avoidance (A. J. Elliot & Harackiewicz, 1996; Schmidt, 2005) and competitiveness (Harackiewicz et al., 1997; Turner & Patrick, 2008). Students with performance goal orientation are more likely to be concerned about scores of other students rather than improvement strategies that could help them improve their performance (Mueller & Dweck, 1998).

Attribution theories attempt to explain motivation and emotion through what people attribute to success and failure (Weiner, 1986). In music, young children tend to attribute success to ability and effort (Arnold, 1997; Legette, 1998). In addition, students attributing failure to effort or strategy anticipate future improvements (Austin & Vispoel, 1992; McPherson & McCormick, 2000). The research examining the effect of age on attribution has produced differing findings. Asmus (1986) found that as children grow older, their attributions are more ability based, whereas other research has found attributions to become more effort based (Legette, 1998; Schmidt, 2005) or to remain the same (Arnold, 1997). Between effort and ability, boys tend to rate ability higher than girls and girls rate effort higher than boys (Arnold, 1997).
Related to the research on motivation, Mueller and Dweck (1998) found that praise for ability or effort on a previous task could affect attribution of failure on successive tasks. Further research has found that generic feedback, as opposed to specific feedback, may encourage students to think success is related to a stable trait rather than effort (Cimpian, Aree, Markman, & Dweck, 2007).

Teacher feedback to student performance is an important component of the teaching and learning cycle and an issue related particularly to effective teacher preparation. The type of feedback given to a student can affect motivation (Butler, 1987; Dweck, 2008b; Grant & Dweck, 2003; Kamins & Dweck, 1999), orientation, and attribution (Mueller & Dweck, 1998). Feedback in the form of praise for ability has been found to encourage performance goal orientation, whereas praise for effort has been found to encourage learning goal orientation (Mueller & Dweck, 1998).

The effect of feedback in the form of praise can also affect task persistence and task enjoyment. Students praised for their intelligence have shown a lower desire to persist after failure and higher task enjoyment (Kamins & Dweck, 1999; Mueller & Dweck, 1998). Other research has found that generic praise toward ability results in helpless behavior following a mistake (Cimpian et al., 2007). Overall, music teachers associate musical performance with effort (Schmidt, 2005) rather than talent.

Although music instruction requires teachers to provide feedback to students following musical performances and the psychological literature indicates that praise for effort functions differently from praise for effort, no research has investigated this difference in a music setting. Based on previous research on the effects of praise (E. S. Elliot & Dweck, 1988; Kamins & Dweck, 1999; Mueller & Dweck, 1998) along with the goal of informing music teacher preparation, the purpose of this study was to examine the effects of verbal praise on achievement goal orientation, performance attribution, and student motivation in a music setting. For this study, the following research questions were posed:

Research Question 1: Does verbal praise significantly affect achievement goal orientation, performance attribution, and rhythmic performance?

Research Question 2: Does verbal praise significantly affect motivation as measured by task persistence, task enjoyment, and performance judgment?

Research Question 3: Is there a significant difference in attribution to musical failure based on which kind of verbal praise is received?

Research Question 4: Is there a significant difference in attribution to musical failure based on achievement goal orientation?

Method

Participants and Rhythm Training

Participants ($N = 87$) were fourth-grade students at two elementary schools in a medium-sized Midwestern city in the United States. The investigator’s institutional
review board granted approval for research, and each school’s principal granted permission to conduct research. Consent was obtained from each student’s parent. Schools were selected based on researcher familiarity with the participating teacher, and students were recruited from all fourth-grade classrooms at each school.

Each fourth-grade class participated in Rhythm Workout, a researcher-designed classroom lesson teaching a series of strategies to improve rhythmic skills. Rhythm Workout covered four strategies toward improving rhythmic performance: scanning, feeling the beat, saying rhythms while playing, and looking ahead (see the appendix). This was followed by a training session on a rhythm-testing system using the SmartMusic assessment tool. Students were told that the software could measure rhythmic accuracy and that the research project was to measure their rhythm. During the training session, the researcher demonstrated how the rhythm test worked and how to take the test. Students were allowed to ask questions at the end of the training session.

Measurements and Procedure

The procedures for this study were modeled after those used by Mueller and Dweck (1998). Each student was asked individually to read and perform two pairs of rhythm sets: two easy and two difficult. All rhythms were written in 4/4 meter, containing quarter notes, quarter rests, and eighth notes. Development of simple and difficult rhythms consisted of a pilot study with a separate group of fourth graders who rated sets of rhythms for difficulty. Based on these results and consultation with the cooperating music teachers, four rhythms sets (two easy and two difficult) were used for this study (Figure 1). Rhythms were assessed for accuracy using the software SmartMusic and recorded for reliability measures.
For the first half of the procedure, the researcher tested students individually away from their regular music classroom. At the beginning of each session, the researcher reviewed both the rhythm-playing strategies from *Rhythm Workout* and the procedures of the testing. To perform the rhythms, each student tapped his or her fingers on a drum pad wired with a microphone. Each student wore headphones to hear a count-off followed by clicks that repeated at 90 beats per minute. Four-measure rhythms notated in a notebook were placed on the table in front of the student sitting down. Following each rhythm performance, the following data from *SmartMusic* were recorded: (a) percentage score and (b) notes tapped incorrectly. The computer screen was angled away from the students so they could not see their score. The first set of rhythms was intentionally simple so that each student could feel successful.

At the conclusion of the first set of rhythm patterns, each student was told that he or she had done well on the rhythm task (e.g., “You really played those rhythms well. You got an 82 according to the computer. That’s a very good score”). Regardless of what the student scored, each student was told he or she had scored an 82 on the test and that a score of 82 was very good. Similar to the experimental design of Mueller and Dweck (1998), each student was then given one of three different types of verbal praise. Approximately one third of the students ($N = 29$) were praised for their ability (e.g., “You must be talented in music”), one third of the students ($N = 30$) were praised for their effort (e.g., “You must have focused hard on the strategies before you played them”), and the remaining third of the students were in the control group ($N = 28$) and received no praise following the test except that his or her score was high.

To measure the achievement goal orientation, students were asked to select one of two options for additional rhythms. One choice represented a performance goal: “Rhythms I think I’m pretty good at so I can show how good I am in music.” The other choice represented a learning goal: “Challenging rhythms that I can learn from even if I don’t play them correctly.” These two choices were verbally displayed and read to each student without the labels of “performance” or “learning” associated with each statement. After choosing an option representing an achievement goal, each student was told that if there was time at the end of the exercise, the student could work on the type of rhythm he or she chose. Next, each student was asked to respond to questions that would determine (a) task persistence, (b) task enjoyment, and (c) performance judgment (Mueller & Dweck, 1998). To measure persistence and enjoyment, students used a 5-point Likert-type scale (*very much* to *not at all*), to answer the following two questions: “How much would you like to take these rhythms home to practice them until they are perfect?” and “How much did you enjoy playing the rhythms?” To measure the rhythmic quality of their performance, students rated their performance on a scale from 1 to 5 with a 1 indicating *poor* and a 5 indicating *perfect*.

Based on procedures used in previous research (Legette, 2003), a color wheel similar to that used by Mueller and Dweck (1998) was used to measure attributions. Four colored wheels or circles containing attribution statements were concentrically joined by a cut slit in the radius of each circle. As a whole, the color wheel could be manipulated by each student to reveal different amounts of each color or attribution (Figure 2).
The four colors of the wheel represented attributions to effort, talent, time, and luck: “I focused hard on the strategies,” “Music is my thing,” “Had enough time,” and “Lucky today.” This procedure allowed students to rotate each color to represent why they thought they scored as they did.

For the second half of the procedure, each student was given two difficult rhythm patterns to play. In addition to the types of rhythms occurring in the first half of the procedure (easy), the difficult rhythms also included rests that occurred randomly through the pattern. Following the difficult rhythm set, students were informed that they did not score as well on the second set as they did on the first. Students in all three groups were told they scored a 55 regardless of their real score. After being informed of doing worse on the second set of rhythms, students were again measured for their perceptions of task persistence, task enjoyment, performance judgment, and attributions for performance. The four-color wheel given to students to measure failure attributions following the unsuccessful performance was similar to the previous wheel but with opposite comments: “Didn’t focus hard enough on the strategies” (effort), “Music is not my thing” (talent), “I didn’t have enough time” (time), and “Not lucky today” (luck).
The end of each session concluded with debriefing the student. Following the second set of questions, students were told that the second set of rhythms was very difficult and more appropriate for much older students or adults. They were told that a score higher than 40 was good for a student of their age and that the first set of rhythms was more appropriate for their skill level.

Results

Two students were excluded from the study because their score on the difficult rhythms was 100% and informing them of a lower score did not appear to be within the realm of reasonable doubt for the students. Two other students were excluded from the study because of their very low score on the easier rhythms. Reliability of the SmartMusic scoring using rhythm scoring by the researcher and a second trained scorer with 20% of the scores was found to be moderately high for both the success rhythms ($r = .89$) and failure rhythms ($r = .81$). Students’ average score on the first set of rhythms (successful) was 77.69 ($SD = 18.39$) and 48.39 ($SD = 21.80$) on the second set (unsuccessful).

Before data were examined relative to the purpose of the study, data from the first rhythm test were analyzed in order to determine whether rhythmic ability differed significantly among the three verbal feedback groups. Students were grouped by ability into three equal groups (high, mid, and low) based on scores from the first set of rhythms (successful). A 3×3 (feedback group × ability group) chi-square contingency table indicated rhythmic ability was evenly distributed across the three feedback groups, $\chi^2(4, 87) = 4.72, p > .05$.

Students choosing to play rhythms they were “good at and would show how good they were in music” were identified as selecting a *performance goal*. Those choosing to play “challenging rhythms they could learn from” were identified as selecting a *learning goal*. To examine the effect of verbal praise on student goal choice, data were analyzed by a 3×2 (group × goal) chi-square contingency table. As can be seen in Figure 3, results indicated a significant effect of verbal praise, $\chi^2(2, 87) = 16.71, p < .05$. Of the 30 students in the effort feedback group, 90% ($N = 27$) selected a learning goal whereas only 41% ($N = 12$) of the 29 students in the talent feedback group selected a learning goal. Students in the control group were equally divided ($N = 14, N = 14$) between selecting learning and performance goals, respectively.

Following both the successful and unsuccessful rhythm performances, each student was asked to rate three variables: (a) willingness to take home the rhythms to practice (task persistence), (b) enjoyment of playing the rhythms (task enjoyment), and (c) how well they played their rhythm (performance judgment; see Table 1). Three 2-way repeated-measures analyses of variance (ANOVAs) were used to analyze the effect of verbal praise on task persistence, task enjoyment, and performance judgment and the changes following the unsuccessful performance. There was no main effect of verbal praise group on overall task persistence, $F(2, 84) = 2.13, p > .05$. Though the effect
size was small, there was a significant interaction between verbal praise groups and the two performances, $F(2, 84) = 3.16, p < .05, \eta_p^2 = .07$. Whereas task persistence decreased between the two performances in the talent praise and control groups, task persistence in the effort praise group increased (Figure 4). No significant main effects of verbal praise group or interactions were found for either task enjoyment or performance judgment.

Table 1. Means and Standard Deviations for Task Persistence, Task Enjoyment, and Rhythm Performance Judgment Following Successful and Unsuccessful Rhythm Performances

<table>
<thead>
<tr>
<th></th>
<th>Successful Performance</th>
<th></th>
<th>Unsuccessful Performance</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>Task persistence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effort</td>
<td>3.63</td>
<td>1.07</td>
<td>3.93</td>
<td>1.11</td>
</tr>
<tr>
<td>Talent</td>
<td>3.59</td>
<td>1.27</td>
<td>3.31</td>
<td>1.04</td>
</tr>
<tr>
<td>Control</td>
<td>4.07</td>
<td>0.94</td>
<td>3.93</td>
<td>1.25</td>
</tr>
<tr>
<td>Task enjoyment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effort</td>
<td>4.37</td>
<td>0.81</td>
<td>3.63</td>
<td>0.89</td>
</tr>
<tr>
<td>Talent</td>
<td>4.45</td>
<td>0.78</td>
<td>3.72</td>
<td>0.96</td>
</tr>
<tr>
<td>Control</td>
<td>4.64</td>
<td>0.49</td>
<td>3.61</td>
<td>0.99</td>
</tr>
<tr>
<td>Performance judgment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effort</td>
<td>3.60</td>
<td>0.78</td>
<td>2.37</td>
<td>0.65</td>
</tr>
<tr>
<td>Talent</td>
<td>3.38</td>
<td>0.76</td>
<td>2.41</td>
<td>0.78</td>
</tr>
<tr>
<td>Control</td>
<td>3.43</td>
<td>0.69</td>
<td>2.39</td>
<td>0.79</td>
</tr>
</tbody>
</table>
Failure attribution was measured after each student’s unsuccessful performance by having the student adjust a color wheel that represented four attributions for failure: lack of effort, lack of talent, not enough time, and unlucky. Four Kruskal–Wallis one-way ANOVAs were used to examine the effect of feedback group on the four failure attributions. No significant differences ($p > .05$) were found between groups for any of the four attributions made following their unsuccessful performance.

To examine the effect of verbal praise on the change of scores from the successful performance to the unsuccessful performance, rhythm performance scores were analyzed using a two-way ANOVA with repeated measures with the successful performance and unsuccessful performance scores as the repeated measures and verbal praise group as the between-subjects factor. There was no significant interaction between verbal praise and scores, $F(2, 84) = 1.04, p > .05$.

To examine the effects of achievement goal orientation, students were grouped by their achievement goal orientation into two groups: performance goal and learning goal. Three Mann–Whitney U tests were used to analyze differences between goal selection groups for post–unsuccessful performance measures. Significant differences were found between goal selection groups for task persistence, $U(34, 53) = 674.5, p < .05$ and task enjoyment, $U(34, 53) = 641.5, p < .05$. Students who selected learning goals reported significantly higher ($p < .05$) task persistence ($M = 3.94, SD = 1.03$) and task enjoyment ($M = 3.34, SD = 0.98$) than students selecting performance goals ($M = 3.38, SD = 1.28$; $M = 3.35, SD = 0.98$).

Discussion

Findings from this study indicated that the different types of verbal praise influenced students’ achievement goal orientations and task persistence. Students
praised for their effort tended to choose learning goals and displayed a more positive attitude toward task persistence than students who were told they were talented or students who were just told they had scored high. This finding supports previous research using mathematics (Mueller & Dweck, 1998). In addition, those students who were praised for their musical talent tended to select performance goals. Of additional interest is the finding that students in the control group (who were only told they scored high) were equally split between selecting learning goals and performance goals. This suggests that the feedback comments of a teacher, in addition to score evaluation, could be very persuasive to the student for selecting achievement goals.

When students were grouped by achievement goal orientation (performance vs. learning), students selecting learning goals displayed higher task persistence and task enjoyment following the poor performance than their counterparts selecting the performance goals. Previous research has found relationships between goal orientation and mind-sets with regard to learning (Dweck, 2008a). People selecting learning goals tend to exhibit a growth mind-set toward learning, whereas people selecting performance goals tend to have a fixed mind-set. If selection of a learning goal or performance is related to a mind-set toward learning, this could explain why the students in this study who selected learning goals showed more task enjoyment and task persistence following the unsuccessful performance. According to an incremental theory of intelligence, a challenging task is seen as a learning opportunity rather than evidence of a low-ability trait (Blackwell et al., 2007; Nussbaum & Dweck, 2008). In a learning environment, students should be encouraged to view difficult tasks as learning opportunities.

When music educators encourage students to attempt and learn more complicated tasks that carry an element of risk, verbal feedback from a teacher can affect a student’s mind-set toward these more challenging goals. The students in this study were given a relatively simple rhythmic task at the beginning. The element of rhythm was isolated to make the task easier for students and adaptable for honest praise toward a good performance. It is important for students to perceive challenges as only obstacles in learning that require a change of strategy and ultimately result in learning. In the effort feedback group, significantly more students selected challenging rhythms (learning goals) over easier rhythms with which they could appear more accomplished (performance goals). It is worth noting that in the group that received praise for talent, more students chose performance goals than learning goals. Those responsible for music teacher preparation may want to advise their preservice teachers of the impact of teacher feedback.

As was the case with previous research, parents, music educators, and music teacher educators should be cautious when using praise toward a child’s musical performance. Praising talent rather than effort could inhibit a student’s mind-set toward accepting new challenges (Dweck, 2008b). Not only may this inhibit challenge-seeking behavior, it may also inhibit happiness associated with challenges. An individual’s affect or
feeling toward a task could affect his or her motivation (Vispoel & Austin, 1995). As was evidenced in this study, students in the effort feedback group reported the highest enjoyment following the unsuccessful rhythm performance. Exhibiting enjoyment of a challenge and a positive attitude toward task persistence may be two of the most important attributes conducive to learning. In contrast to previous research (Arnold, 1997; Asmus, 1986), the no-feedback group attributed success or failure to a certain factor more than any other. Mueller and Dweck (1998) found that praise for ability or effort on a previous task could affect attribution of failure on successive tasks. This effect was not found in the current study.

Implications for Music Teacher Education

Overall, music educators and music education institutions could benefit from observing the warnings from psychology about the negative effects of praising students for their “talent.” Giving praise for effort rather than talent can encourage students to pursue more learning goals than performance goals. More important, it may help students persist at difficult tasks after they have experienced failure. Teacher education programs could examine their instruction on the use of verbal praise in their students’ teaching settings to promote more teacher praise for effort and avoid praise for talent.

Frequency of praise has traditionally been recorded and evaluated in preservice teaching environments, and results of the current study indicate that it would be beneficial to also monitor the type of praise the teacher is using. In addition, higher education music schools could evaluate their approach to teaching musical talent and the possible effects of praise on entering freshmen. From an educational viewpoint, musical ability is not fixed but rather can change over time with appropriate training.

In music, it is common to refer to high ability as talent without much consideration to the effect it may have on the student. Overemphasizing that success in music is a result of talent or natural ability could negatively affect student attitude toward task persistence and enjoyment of taking on a challenging task. In contrast, task persistence and an internalized enjoyment of a challenging task would be what music teachers are attempting to teach through music and what music teacher education programs are attempting to instill in their graduates. Honest and appropriate praise for effort can possibly help students and music teachers to learn and value these aspects of musical development. Since attitude toward a task can influence the outcome, future research in the area of praise and motivation needs to examine the effects of multiple avenues of praise (e.g., teacher, family, peers) on student motivation and attitude toward task persistence.
Appendix

Classroom Slides of Rhythm Workout

4 strategies
1. Scan with eyes
2. Feel the beat
3. Play & say
4. Look ahead

1. Scan
Scan through as much of the music as you can.

2. Feel the beat
In your feet or with your head

3. Say & play
Say the rhythms while you play.

4. Look Ahead
Read the next measure while you play the current measure.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.
References

